Nhiều khả năng, thước đo chính xác nhất cho sự tiến bộ của Machine Learning tại Apple đến từ cộng cuộc mua lại AI quan trọng nhất từ trước đến nay, Siri. cỗi nguồn của Siri chính là chương trình DARPA tham vọng liên hệ đến các trợ lý sáng dạ. Sau đó, 1 số scientists đã thành lập công ty riêng, dùng chương trình DARPA để phát triển thành ứng dụng. Steve Jobs đã tự mình thuyết phục những người sáng lập bán DARPA lại cho Apple vào năm 2010 và trực tiếp đưa Siri vào hệ thống điều hành. Sau đó, màn ra mắt của Siri chính là điểm nhấn trong sự kiện công bố iPhone 4S (10/2011). Giờ đây, cách thức hoạt động của Siri đã tiền tiến đến nỗi users không cần phải kích hoạt nó bằng nút home hay thậm chí không cần nói “Hey, Siri” (1 tính năng tận dụng công nghệ Machine Learning, giúp iPhone nghe ngóng được thông báo mà không hao tốn pin). Trí thông minh của Siri đã được tích hợp vào Apple Brain và tự hoạt động dù users không trực tiếp mở lời ra lệnh.
Eddy Cute chỉ ra 4 nhân tố mấu chốt của Siri chính là: nhận diện giọng nói (để hiểu được thời khắc nào bạn trò chuyện với Siri), khả năng hiểu tiếng nói tự nhiên (để nắm bắt những gì bạn đang nói), execution (để thực hiện truy hỏi hoặc request) và phản hồi (để đáp lại với bạn). “Machine Learning có sức ảnh hưởng đáng kể đến bít tất các yếu tố đó” – Eddy Cue nói.
Tom Gruber – Trưởng Bộ phận Phát triển Siri Cấp Cao (hình trên) và Alex Acero – Chuyên viên nghiên cứu Giọng nói (hình dưới)
Tom Gruber – người đến với Apple duyệt thương vụ xác nhập trên (các đồng sáng lập cùng thời với Gruber rời đi sau năm 2011) cho rằng thậm chí trước khi Apple áp dụng neural nets vào Siri thì quy mô user base của Apple đã cung cấp nguồn dữ liệu dùng để “huấn luyện” các nets về sau. “Steve Jobs nói rằng tôi đang có 1 bước ngoặt lớn, từ 1 người đi đầu, 1 vận dụng đến với hàng trăm triệu users mà không hề sở hữu 1 chương trình beta nào. Cứ thế, bạn bỗng nhiên sở hữu rất nhiều users. Users sẽ nói với bạn cách mọi người bàn tán về những gì ăn nhập với áp dụng của bạn. Đây chính là bước phát triển trước hết. Và sau đó, neural networks đã xuất hiện”
Quá trình chuyển đổi sang neural net xử lý nhận mặt giọng nói của Siri được thực hành khi rất nhiều chuyên gia AI nhập Apple, trong đó có Alex Acero. Acero đã bắt đầu sự nghiệp với nhận mặt giọng nói tại Apple trong những năm đầu 90 và sau đó dành nhiều năm làm việc tại Microsoft Research. “Tôi rất yêu thích công việc đó và đã xuất bản nhiều bài viết. Nhưng khi Siri ra đời, tôi nhận ra: Đây là dịp để biến các deep neural networks thành hiện thực, không phải là thứ hàng trăm người sẽ đọc, mà là thứ được hàng triệu người sử dụng”. Nói cách khác, Alex Acero là 1 kiểu scientist mà Apple đang lùng – tối ưu hóa sản phẩm hơn là tập trung vào publishing.
Khi Acero đến “nhà táo” cách đây 3 năm, Apple vẫn đang cấp giấy phép cho hầu hết công nghệ giọng nói cho Siri từ bên thứ 3. Federighi bảo đây là 1 pattern mà Apple nghiên cứu liên tục. “Khi 1 lĩnh vực công nghệ có đóng góp quan yếu cho sản phẩm trong thời gian dài, chúng tôi sẽ xây dựng hàng ngũ in-house để truyền tải được kinh nghiệm mà user muốn. Để tạo ra 1 sản phẩm tuyệt trần, chúng tôi muốn sở hữu và đổi mới công nghệ đó hơn nữa bằng nguồn lực nội bộ. Speech là 1 thí dụ ngoại lệ khi chúng tôi ứng dụng các tài nguyên bên ngoài có sẵn, nhờ đó đạt được hiệu quả tốt ngay từ đầu”
Từ đây, team bắt đầu huấn luyện neural net để thay thế nguyên bản của Siri. “Chúng tôi có GPU (graphics processing unit microprocessor – 1 bộ vi xử lý chuyên dụng nhận nhiệm vụ tăng tốc, xử lý đồ họa cho bộ vi xử lý trung tâm CPU) lớn nhất và tệ nhất… Và rất nhiều dữ liệu”. Lần ra mắt của Siri vào 7/2014 đã cho thấy quờ hoạt động đó không hề vô ích.
“Tỷ lệ mắc lỗi của Siri giảm… hồ hết là nhờ deep learning và cách chúng tôi tối ưu deep learning – không chỉ nhờ chính thuật toán mà còn nhờ context của quờ quạng sản phẩm end-to-end”
Nói về “end-to-end”, Apple không phải là công ty trước tiên sử dụng DNNs trong nhận mặt giọng nói. Nhưng bằng cách kiểm soát toàn bộ hệ thống delivery, Apple lại có lợi thế riêng. Vì Apple tự tạo chips riêng nên Acero có thể làm việc trực tiếp với đội ngũ thiết kế silicon và các kĩ sư viết firmware cho các thiết bị để tối ưu hiệu suất của neural net. Nhu cầu của Siri team thậm chí còn ảnh hưởng đến thiết kế của iPhone.
“Không chỉ là silicon” – Federighi chia sẻ – “Đó chính số lượng những microphones chúng tôi đặt trong thiết bị, là nơi chúng tôi đặt microphones. Cách chúng tôi điều chỉnh hardware, những mics đó và software stack xử lý audio. Chúng trở thành những mảnh ghép gắn kết với nhau – 1 lợi thế không tưởng so với các doanh nghiệp phải xây dựng 1 vài phần mềm nào đó, và chỉ biết ngồi xem chuyện sẽ xảy đến”.
Một khía cạnh khác: Khi 1 Apple neural net hoạt động trong 1 sản phẩm, nó có thể trở nên 1 công nghệ chủ chốt dùng cho những mục đích khác. bởi vậy, khi Machine Learning tương trợ Siri thấu hiểu user, Machine Learning đã trở thành phương tiện dùng để xử lý chính tả thay thế cho typing. Hệ quả là, users nhận ra thông điệp và emails của họ trở nên mạch lạc hơn nếu họ không sử dụng bàn phím mềm; dần dần, users sẽ nhấn vào microphone key và trò chuyện nhiều hơn.
nguyên tố thứ 2 của Siri mà Eddy Cue đề cập chính là khả năng hiểu được ngôn ngữ tự nhiên (natural language understanding). Siri bắt đầu sử dụng Machine Learning để hiểu được hoài vọng của người dùng kể từ tháng 11/2014 và ra mắt 1 phiên bản học sâu hơn 1 năm sau đó. thời khắc Siri sở hữu tính năng nhận diện giọng nói thì Machine Learning đã có kinh nghiệm trong việc thông dịch các dòng lệnh linh hoạt hơn. Eddy lấy iPhone của mình ra, kích hoạt Siri làm thí dụ. “Thông qu áp dụng Square Cash, gửi đến Jane 20 dollars”. Màn hình lúc này sẽ phản chiếu sờ soạng request của Cue. Eddy Cue thử 1 lần nữa, nhưng đổi thay ngôn từ 1 chút. “Bắn 20 bucks đến vợ của tôi”. Kết quả vẫn hao hao.
Nếu không có các tiến bộ về Siri, Apple sẽ không thể liên tiếp ra mắt Apple TV – thiết bị trổi với tính năng quản lý giọng nói tân tiến. Tuy các phiên bản trước đây của Siri yêu cầu bạn nói 1 cách hạn chế thì phiên bản supercharged-nhờ-deep-learning không chỉ mang đến những chọn lựa chuyên biệt từ rất nhiều catalog về movies và bài hát, mà còn giải quyết các concepts như: Hãy cho tôi 1 bộ phim kinh dị có Tom Hanks (Nếu Siri thật sự sáng ý, nó sẽ trả về kết quả The Da Vinci Code). “Trước khi có công nghệ supercharged-nhờ-deep-learning, bạn sẽ không thể cung cấp được tính năng này” – Federighi đề cập.
Với iOS 10, được ra mắt vào mùa thu năm nay, giọng nói của Siri đã trở nên nguyên tố rút cuộc trong 4 yếu tổ được chuyển đổi bởi machine learning. Về bản tính, dấu ấn của Siri đến từ database gồm các bản ghi âm thu thập được tại voice center; mỗi câu nói là sự chắp vá từ các bản ghi âm này. Theo Gruber, Machine Learning khiến mọi thứ trở nên mượt mà hơn và giúp âm thanh Siri giống người thực hơn.
Acero đã thực hành 1 phiên bản demo đâu tiên rưa rứa giọng của Siri với các nhân tố robot quen thuộc. Phiên bản này sẽ hỏi bạn bằng 1 chất giọng hấp dẫn trôi chảy: “Hi, tôi có thể làm được gì cho bạn?”. Điểm dị biệt ở đây là gì? Chính deep learning!
mặc dầu chỉ là 1 chi tiết nhỏ, nhưng khi sở hữu 1 giọng nói thiên nhiên hơn, Siri có thể đem đến những dị biệt lớn. “Mọi người sẽ thấy tin tưởng.# hơn nếu giọng nói có chất lượng cao hơn. Giọng nói càng vấn người dùng thì càng khiến users dùng nhiều, góp phần tăng hiệu ứng hồi lại (return effect)”
Việc sử dụng Siri cũng như thực hành những cải tiến trên Machine Learning của Apple càng có nhiều ý nghĩa hơn khi rút cục, Apple cũng mở Siri cho lập trình viên. Tuy nhiên với các chuyên gia thì quy trình này vẫn xảy ra quá muộn vì số lượng đối tác Siri bên thứ 3 mà Apple sở hữu chỉ dừng lại vài chục, trong khi Alexa của Amazon đã có hơn 1000 “kỹ năng” được cung cấp bởi các lập trình viên bên ngoài. Apple lại cho rằng điều này không kéo dài vì users của Amazon phải dùng ngôn ngữ riêng để tiếp cận các kĩ năng đó. Theo Apple, Siri sẽ tích hợp những thứ như SquareCash hoặc Uber 1 cách thiên nhiên hơn (1 đối thủ khác, Viv - được 1 vị đồng sáng lập Siri tạo nên – cũng hứa quy trình tích hợp chặt dù chưa ban bố ngày ra mắt cụ thể)
Cùng lúc đó, Apple cũng thông báo rằng những cải tiến của Siri đang dần tạo ra sự khác biệt nhờ vào những tính năng mới hoặc thu được các kết quả tốt hơn từ những truy nã quen thuộc. “Số lượng requests vẫn đang tăng và tăng. Tôi nghĩ Apple đang thực hiện tốt hơn công việc truyền thông sờ soạng những gì chúng tôi làm. thí dụ, tôi thích thể thao và bạn có thể hỏi Siri ai là người mà nó nghĩ sẽ thắng lợi trận bóng, nó sẽ trả lại cho bạn 1 đáp án. Tôi còn không biết là Apple có thể làm được điều đó nữa cơ!” – Eddy Cue san sớt.
Có thể vấn đề lớn nhất khi Apple chấp thuận Machine Learning chính là cách để đạt được thành công dù vẫn cam kết những nguyên tắc bảo mật người dùng. Apple đã mã hóa thông tin users để không ai, kể cả các luật sư của Apple có thể đọc được (kể cả FBI dù có lệnh nhà pha từ tòa án). Apple cũng không hề thu thập thông báo người dùng nhằm mục đích lăng xê.
đương nhiên đứng từ giác độ người dùng thì rất đáng khen nhưng sự nghiêm túc quá mức của Apple với vấn đề bảo mật này vẫn chưa mang lại hiệu quả trong việc lôi kéo các nhân tài AI về với công ty. “thảy những gì mà các chuyên gia Machine Learning mong muốn đó chính là dữ liệu” – 1 nhân viên cũ của Apple, hiện đang làm cho công ty về AI cho biết – “Nhưng vì lập trường bảo mật mà Apple thường lặng thầm làm mọi thứ. Bạn có thể sẽ tự hỏi liệu đó có phải là điều đúng đắn nhưng cũng chính điều đó khiến Apple trở thành nổi danh vì đã không trở nên những kẻ chạy đua theo công nghệ AI”
Quan điểm này bị các nhà điều hành của Apple tranh luận rất nhiều vì họ cho rằng: vẫn có thể lấy được ắt các dữ liệu và tận dụng mạnh mẽ công cụ Machine Learning mà không cần phải giữ thông báo cá nhân của users trên cloud, thậm chí cũng không cần lưu lại hành vì của user để huấn luyện cho neural nets.
Có 2 vấn đề ở đây. Thứ nhất, chính là việc xử lý thông báo cá nhân chủ nghĩa trong các hệ thống dựa trên Machine Learning. Khi thông báo chi tiết về 1 user được thu gom qua hệ thống xử lý neural-net, chuyện gì sẽ xảy ra với thông báo đó? Thứ hai, việc thu thập thông tin đòi hỏi phải huấn luyện các neural-nets nhận diện hành vi. Nhưng làm thế nào để làm được điều đó mà không thu thập thông tin cá nhân của users?
Apple đã có câu trả lời cho cả 2 vấn đề. “Một số người nhận thức được chúng tôi không thể thực hành những điều này với AI vì chúng tôi không có data. Nhưng chúng tôi đã tìm ra cách để lấy dữ liệu mà chúng tôi cần nhưng vẫn giữ được tính bảo mật. Đó chính là điểm mấu chốt”
Apple đã giải quyết vấn đề trước hết – bảo vệ gu và thông báo cá nhân mà neural nets đã nhận diện được – bằng cách tận dụng khả năng quản lý cả phần mềm và phần cứng độc quyền. Nói 1 cách đơn giản, đó chính là Apple Brain. “Chúng ta giữ lại 1 vài thông báo mẫn cảm nhất khi Machine Learning quét qua quờ quạng thiết bị” – Federighi nói. tỉ dụ, Federighi viện dẫn các suggestions vận dụng, icons xuất hiện khi bạn quét sang phải cũng chính những vận dụng mà bạn định sẽ mở ra tiếp theo. Các dự đoán như thế được hình thành dựa trên rất nhiều nguyên tố và rất nhiều trong số chúng can dự đến hành vi của riêng người dùng. Theo Federighi, 90% thời gian con người dùng để tìm những gì họ muốn nhờ các những suggestions.
thông tin khác mà Apple lưu trữ trên các thiết bị có thể là dữ liệu mang tính cá nhân nhất mà Apple thu thập được: những từ ngữ mà users gõ bằng bàn phím iPhone QuickType standard. Nhờ có hệ thống neural network theo dõi thời điểm bạn gõ chữ, Apple sẽ phát hiện được các events và items chính như thông báo chuyến bay, số giao thông và lịch hẹn – nhưng các thông tin đó lại nằm trong điện thoại của bạn. Thậm chí trong các backups lưu trên cloud của Apple, thông tin được chắt lọc để backup chẳng thể đụng đến. “Chúng tôi không muốn thông báo đó được lưu trữ trong servers của Apple. Một tổ chức như Apple không có nhu cầu tìm hiểu về thói quen của bạn hay địa điểm bạn sẽ đến”
Apple cũng cố gắng giảm số lượng thông tin được giữ lại. Federighi đề cập đến ví dụ như sau: khi bạn có 1 cuộc hội thoại và ai đó nói đến 1 thuật ngữ có thể trở nên từ khóa tìm tiềm năng, các doanh nghiệp khác sẽ phải phân tích thảy cuộc hội thoại trong cloud để nhận mặt những thuật ngữ đó nhưng 1 thiết bị Apple có thể nhận diện được chúng mà không cần phải lấy data ra khỏi quyền sở hữu của người dùng. Hệ thống của Apple sẽ liên tiếp lớp các kết quả hiệp theo knowledge base (thông tin chung) trong điện thoại (1 phần của “brain” 200 megabyte)
“Thao tác này rất gọn nhẹ nhưng được thực hiện xuyên suốt knowledge basse, với hàng trăm ngàn locations và entities….” toàn bộ ứng dụng của Apple đều dùng knowledge base (thông báo chung) như app chừng Spotlight, Maps và Safari. Knowledge base còn hỗ trợ cả auto-correct.
Nhưng liệu những quy định bảo mật nghiêm ngặt của Apple có gây chướng ngại cho các thuật toán neural net hay không – đó chính là vấn đề thứ 2 đã được đề cập trước. Neural nets cần 1 lượng lớn dữ liệu để được train đầy đủ, chuẩn xác. Nếu Apple không can thiệp vào hành vi của ắt người dùng, vậy làm sao để lấy được dữ liệu đó? Như nhiều công ty khác đã làm, Apple huấn luyện nets của mình trên các tập thông tin công khai có sẵn (thí dụ như bộ thông tin gồm các stock images để nhận diện hình ảnh). Nhưng thỉnh thoảng, nó cần nhiều thông báo chi tiết hơn hoặc cập nhật hơn, mà những thông báo này chỉ có thể đến từ user base. Apple đã thay lấy thông báo này mà không cần biết đến users đó là ai; Apple ẩn dữ liệu, gắn nó với các mã nhận mặt ngẫu nhiên không kết liên với Apple IDs.
Bắt đầu từ iOS 10, Apple dự định sẽ tuyển chọn 1 công nghệ khá mới tên là Differential Privacy. Công nghệ này dựa vào thông báo của đám đông và không nhận mặt bất cứ cá nhân nào. Chẳng hạn Diffential Privacy sẽ tìm các từ khóa nổi tiếng mới nhất không có trong knowledge base của Apple hoặc tự điển của Apple, thường xuất hiện bất thần dựa trên rất nhiều đáp án liên can đến các truy tìm hoặc lượt sử dụng các emojis nào đó tăng cao. “Cách thức truyền thống mà giới công nghệ giải quyết vấn đề này chính là gửi đi mọi từ, mọi kí tự mà bạn gõ lên servers, sau đó sẽ soát tuốt luốt và phát hiện những thông báo thúc” – Federighi biểu lộ. “Nhờ thực hành mã hóa end-to-end, chúng tôi sẽ không làm theo cách thức truyền thống đó”. Dù Differential Privacy được phát triển trong cộng đồng research, Apple đang dần dần vận dụng nó trên diện rộng. “Chúng tôi đang thực hành khảo sát trên 1 tỷ users” – Eddy Cue san sẻ.
“Chúng tôi đã bắt đầu nghiên cứu công nghệ này từ nhiều năm trước và đã hoàn thành nhiều sản phẩm hay, có tính thực tại. chừng độ bảo mật của nó thực rất đáng kinh ngạc” – Federighi (sau đó anh ấy diễn đạt 1 hệ thống liên tưởng đến các protocols mã hóa và tung đồng xu ảo mà tôi không theo dõi kịp. Về căn bản, công nghệ này can dự đến việc thêm công cụ toán học vào những phần nào đó của dữ liệu để Apple có thể phát hiện các usage patterns dù không nhận mặt các users cá nhân chủ nghĩa). Anh cũng đề cập đóng góp của Apple rất có giá trị đối với thế giới vì nó cho phép các scientists làm việc với quy trình implementation, từ đó có thể xuất bản bài viết về công trình cá nhân chủ nghĩa.
Rõ ràng, Machine Learning đã đổi thay các sản phẩm của Apple nhưng liệu Machine Learning có đang đổi thay Apple hay không?. Ở khía cạnh nào đó, mindset về Machine Learning nghe đâu dị biệt với các tập quán xưa nay của Apple. Apple là 1 công ty kiểm soát cẩn thận trải nghiệm người dùng, kể cả các cảm biến dự đoán thao tác quét của users. Mọi thứ được thiết kế trước và được xây dựng các đoạn code 1 cách chuẩn xác. Nhưng khi các kĩ sư vận dụng Machine Learning, họ phải lùi lại, để chính phần mềm tự khám phá các hướng giải quyết. Liệu Apple có chấp nhận thực tại là các hệ thống Machine Learning có thể tiếp cận đến thiết kế sản phẩm?
“Thiết kế sản phẩm là cội nguồn của rất nhiều cuộc bàn cãi nội bộ. Chúng tôi thường mang đến các trải nghiệm đã được lên kế hoạch & giám sát chu đáo, từ đó chúng tôi cs thể quản lý tất thảy các hướng đi mà hệ thống đang dự kiến tương tác với người dùng. Khi bạn bắt đầu huấn luyện 1 hệ thống dựa trên lượng dữ liệu hành vi người dùng lớn, [các kết quả xuất hiện] không nhất thiết là những gì mà 1 Apple designer chỉ định. Chúng là những gì xuất hiện từ dữ liệu”
Nhưng với Schiller, “Tuy những công nghệ này ảnh hưởng lớn đến cách thiết kế nhưng đến rút cục, chúng tôi mới là người sử dụng những công nghệ này vì chúng có thể giúp chúng tôi đem đến 1 sản phẩm chất lượng hơn”
Và đây là kết luận: Apple có thể không nói rõ về những gì họ đang với Machine Learning nhưng công ty sẽ tận dụng Machine Learning nhiều nhất có thể nhằm cải thiện các sản phẩm của mình. chứng cứ chính là “bộ não” bên trong điện thoại của bạn.
“Khách hàng thường nhật đang trải nghiệm deep learning mỗi ngày [và đây chính là ví dụ] cho thấy vì sao bạn lại yêu mến 1 sản phẩm nào đó của Apple. [Ví dụ] thú nhất chính là deep learning khôn khéo đến nỗi bạn thậm chí còn không biết về nó cho đến lần thứ 3 khi thấy nó, bạn sẽ dừng lại và tự hỏi: Điều gì đang xảy ra?”
0 nhận xét:
Đăng nhận xét